If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-24x+10=0
a = 9; b = -24; c = +10;
Δ = b2-4ac
Δ = -242-4·9·10
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{6}}{2*9}=\frac{24-6\sqrt{6}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{6}}{2*9}=\frac{24+6\sqrt{6}}{18} $
| 1180=(115)+(4k+5)+(6k+10) | | (115)+(4k+5)+(6k+10)=180 | | x+0.17x=146250 | | 9z93=20=135 | | 7-p=3p+5 | | 7y/8=35/48 | | 6x+3+9x+2=x+ | | 19/6*y=114 | | y^-4=256 | | 19/6y=114 | | .048=200/x | | 16x²=24x+1 | | 13=14m|10-7 | | x^2=12x-864 | | m^2-5m=-3 | | -850=75t-4.90t^2 | | -32=75t-4.90t^2 | | 3(y-2)+1=2(y-3)+(y-3)+(y+1) | | 5a(a+2)=a(6+2a)+10a | | 48=96+2x | | 16=4+3=(t-2) | | 3x=4(x+3) | | 24x²+22x-35=0 | | 6x+18=8x+2 | | 3=12+3j | | 6=12+3j | | (21+x)/x=19/5 | | -4.05=-7/4x | | x^2=198-198x | | (90-x)^1/2=x | | -4.05=-7/4n-1/2n | | 5(x+1)=11x-24 |